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LElTER TO THE EDITOR 

Operator content of the Blume-Cape1 quantum chain 

Deborah B Balbgo and J R Drugowich de Felicio 
Departamento de Fisica e Ciincia dos Materiais, lnstituto de Fisica e Quimica de Si0 
Carlos, USP, Caixa Postal 369, 13560 SBo Carlos, SP, B r a d  

Received 27 October 1986 

Abstract. We calculated the conformal anomaly number of the Blume-Capel quantum 
chain via finite-size corrections to the ground-state energy. In addition we compute, at the 
tricritical point, the lowest excitations of the spectrum to be compared with the theoretical 
description in terms of the irreducible representations of the corresponding Virasoro algebra. 

Recently it was noticed by several authors (Belavin et a1 1984, Dotsenko 1984, Friedan 
et a1 1984, Cardy 1984) that, in two dimensions, conformal invariance severely restricts 
the behaviour of the correlation functions. At the same time, Cardy (1984a, b) has 
shown how to combine this invariance and finite-size scaling to obtain bulk quantities 
from the transfer matrix ( T  = exp(-.rH)) of the finite-width infinitely long strip. The 
above method was successfully applied in studying a large set of challenging problems 
such as the eight-vertex and q-state Potts models (Nightingale and Blote 1983). 
Subsequently the method has proved its utility in the analysis of quantum Hamiltonians 
associated with anisotropic models (Alcaraz and Drugowich de Felicio 1984, Penson 
and Kolb 1984, Gehlen et a1 1954, Alcaraz et a1 1985) as well in investigating the 
non-universal behaviour of inhomogeneous models (Turban 1985, Guimarles and 
Drugowich de Felicio 1986). 

However, the unusual coupling of the relevant parameter 1 /L  to the universal 
quantities of the model kept one more fundamental relation hidden. As shown by 
Blote et a1 (1986) and Affleck (1986) the finite-size corrections to the lowest eigenvalue 
Eo of the Hamiltonian H are closely related to the conformal anomaly number c, 
which describes the particular realisation of conformal symmetry in the theory. In the 
case of periodic boundary conditions this remarkable relation is written 

E : =  f L - r y c / 6 L  (1) 
where f is the thermodynamic limit of the ground-state energy per site and y is a 
constant which restores the conformal invariance lost in the anisotropic limit. Equation 
(1) becomes more interesting when the number c is less than one since in this case 
the model must fall (if the number of primary operators is finite) into the classification 
of Friedan et a1 (1984). Therefore we can use the BPZ parametrisation 

c = 1 - 6/ m ( m  + 1) ( 2 )  
and the Kac formula 

to obtain all the scaling dimensions (x = h + 6) of the primary operators. In this sense 
equation (1) was used by Gehlen and Rittenberg (1986) to study the three-state Potts 
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quantum chain. The result c = 0.800 08( 1) is in complete agreement with the expected 
value c = 3 associated with m = 5 .  Knowing m, equation (3 )  gave the complete set of 
irreducible representations ( h ,  $) of the corresponding Virasoro algebra, which in turn 
was used to understand the spectrum of H. 

Motivated by the success of the above investigation we decided to study the Blume- 
Capel quantum chain (Blume 1966, Capel 1966) in order to extract its conformal 
anomaly number and to understand its spectrum at the tricritical point. The renewed 
interest in this model is twofold: first, it is not an exactly solvable model and, second, 
because at the tricritical point (see figure 1) it is expected to exhibit supersymmetry 
(a  generalisation of conformal symmetry which includes symmetry between bosonic 
and fermionic fields (Qiu 1986)). The Hamiltonain we have studied is 

fi= -E {s=(~)s~(i+l)-~s~(i)-~sx(i)} (4) 

s,(i)=lolo. * . o ~ ~ , o .  .BO 

I 

where SI( i), S,(i) are quantum spin-one operators represented by 

with 

sx=- A [ 1 0 O) 1 &=[: : :) 
0 1 0  0 0 -1 

a 
acting on the product Hilbert space. This Hamiltonian commutes with the operator 

9 = 7 8 [29: ( i ) -~]  (6) 
1 

which allows us to divide the spectrum into two sectors (even and odd). In order to 
calculate the central charge c of this model we need to obtain, for several lattices, the 

P 
0 

3 

o j , , , ,  ‘\.l 
-0 30 0 0 30 0.60 0 90 

a 

Figure 1. Phase diagram of the Blume-Capel Hamiltonian (4). The mean-field approxima- 
tion (MFA)  and the real space renormalisation group ( R G )  calculations were done by 
Hamber (1980) (see also Gefen e l  a /  1981, Boyanovsky and Masperi 1980), whereas the 
finite-size study (FSS) was carried out by Alcaraz er a/ (1985). The triangle ( V )  locates 
the tricritical point T ( a  = 0.9103, p =0.4155) separating the first-(broken) and second-(full) 
order transition lines. 
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ground-state energy per site and to extrapolate it to the thermodynamic limit ( L +  m). 
Next we obtain the factor y by calculating the gap which separates the lowest energies 
of the odd sector, with momentum (k) equal to zero and 2 n l L  (this gap should be 
equal to 2 n y l  L). 

In table 1 we present the estimates of the ratio (E , /L )  at the points T (tricritical) 
and S (critical) (see figure 1). In tables 2 and 3 we list, respectively, estimates of the 

Table 1. Ground-state energy per site ( E , / L )  of the Blume-Cape1 quantum chain at the 
point T (first column) and S (second column). 

L - E , / L  at point T 

0.233 778 43 
0.201 751 77 
0.191 145 37 
0.186338 38 
0.183 754 09 
0.182 204 98 
0.181 203 24 
0.180 518 12 

-E,/ L at point S 

1.908 612 48 
1.857 373 02 
1.840 789 77 
1.833 355 18 
1.829 381 24 
1.827 007 15 
1.825 475 17 
1.824 428 89 

Extr. 0.177 9512(2) 1.820 520(5) 

Table 2. Sequence of estimates for the factor y (see (1)) at the points T (first column) and 
S (second column). 

L T S 

2 0.373 025 0.689 156 
3 0.478 083 0.932 940 
4 0.517 130 1.038 314 
5 0.535 363 1.092 954 
6 0.545 205 1.124 687 
7 0.551 066 1.144629 
8 0.554 81 1 1.157 925 
9 0.557 290 1.167 207 

Table 3. Sequence of estimates for the conformal anomaly number ( c )  of the Blume-Capel 
quantum chain. 

L c at point T c at point S 

1.143 451 
0.855 933 
0.780 001 
0.748 558 
0.732 563 
0.723 441 
0.717 773 
0.712 548 

0.976.5 17 
0.678 981 
0.596 528 
0.560 692 
0.541 680 
0.530 339 
0.523 017 
0.518 008 

Extr. 0.70(2) 0.49(7) 
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factor y and of the conformal anomaly number in both cases. The extrapolated values 
of table 3 are in complete agreement with the expected values c = ( m  =4)  at the 
tricritical point and c = 4 (m = 3)  at the Ising-like critical line. 

In proceeding further, we concentrate our attention on the tricritical point where 
the whole spectrum must be described by the irreducible representations of the Virasoro 
algebra associated with c =A, whose dimensions are 

0 
- 7 -  3 

- 1 -  3 1  

16 80 

IO 5 2. 

In order to check the above statement we calculated the scaled gaps: 

where E L ( P )  is the energy of the ith excited state of H whose momentum is k = 2 n P /  L. 
The experimental results obtained (see table 4) should be compared with the theoretical 
predictions of the conformal invariance (Cardy 1984a, Gehlen and Rittenberg 1986), 
namely 

s , ( P ) = ( h + r ) + ( E + r )  r = 0 , 1 , 2 , . .  

P = ( h  + r )  - (i+ F). 
with 

Because of the periodic boundary conditions only operators with integer spin may 
occur, which means in this case h = h: So the number of irreducible representations 
describing the spectrum of the tricritical Blume-Cape1 (periodic) quantum chain is 
six: (0 ,  o) ,  (B, B), (6, A), (Ai, h), ( 5 ,  5 )  and G, 3. 

To conclude we mention that in the case of free boundary conditions the spectum 
of H is described only by two representations (0 and 2) and the anomalous dirension 
of the surface magnetisation equals 2, as we show in table 5. These results confirm a 

Table 4. The experimental spectrum g,( P) together with its theoretical interpretation ( 8 ( a )  
and ( b ) ) .  

P h + r + i + F  (0,O) (&,A) i&&) (&,A) ({,$) ( & $ )  Ki"(P) 8j- ' (P)  

0 0.075 
0.2 
0.875 
1.2 
2.075 
2.2 
2.875 
3.0 

0.075( 1 ) 

0.87(6) 

2.07(7) 

0.199( 1 )  

1.18(7) 

2.19(2) 

3.0(6) 
2 . ~ 5 )  
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Table 5. Estimates for the anomalous dimension of the surface magnetisation X , =  
2 g ; 7  J a;+). 

L 

2 
3 
4 
5 
6 
7 
8 
9 

- 
1.624 91 5 
1.622 975 
1.596 98 1 
1.579 588 
1.567 248 
1.558 093 
1.551 061 
1.545 508 

Extr. 1.50(2) 

recent proposal by Cardy (1986b) based on the Landau-Ginzburg- Wilson formulation 
of the model. 

It is a pleasure to acknowledge profitable conversations with R Koberle, V Kurak and 
R N Onody. 

This work was supported in part by the Brazilian agencies FAPESP and CNPq. 
All calculations were carried out on the VAX-780 computer of the Physics Department 
supported by a grant from CNPq. 

References 

Affleck I 1986 Phys. Rev. Lett. 56 746 
Alcaraz F C and Drugowich de Felicio J R 1984 J. Phys. A: Marh. Gen. 17 L651 
Alcaraz F C, Drugowich de Felicio J R, Koberle R and Stilck J F 1985 Phys. Reo. B 32 7169 
Belavin A, Polyakov A and Zamolodchikov A 1984 NucL Phys. B 241 3333 
Blote H,  Cardy J L and Nightingale M P 1986 Phys. Reo. Lerr. 56 742 
Blume M 1966 Phys. Reo. 141 517 
Boyanosky D and Masperi L 1980 Phys. Reo. D 21 1550 
Capel H 1966 Physica 32 966 
Cardy J L 1984a J. Phys. A: Math. Gen. 17 L385 
- 1984b Nucl. Phys. B 240 514 
- 1986a Nucl. Phys. B 270 186 
- 1986b Nucl. Phys. B 275 200 
Dotsenko V S 1984 Nucl. Phys. B 235 54 
Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lerr. 52 1575 
Gefen Y, lmry Y and Mukamel D 1981 Phys. Rev. B 23 6099 
Gehlen G V, Hoeger C and Rittenberg V 1984 J.  Phys. A: Marh. Gen. 17 L469 
Gehlen G V and Rittenberg V 1986 J.  Phys. A: Math. Gen. 19 L625 
Guimarles L G and Drugowich de Felicio J R 1986 J.  Phys. A: Math. Gen. 19 L341 
Hamber H 1980 Phys. Reo. B 21 3999 
Nightingale M P and Blote H 1983 J. Phys. A: Math. Gen. 16 L657 
Penson K and Kolb M 1984 Phys. Reo. B 29 2854 
Qiu Z 1986 Nucl. Phys. B 270 205 
Turban L 1985 J. Phys. A: Math. Gen. 18 L325 


